
Using Microsoft Solver Foundation to Analyse
Feature Models and Configurations

Juan Carlos Navarro
Universidad Piloto de Colombia

juan-navarro@unipiloto.edu.co

Jaime Chavarriaga
Universidad de los Andes
Vrije Universiteit Brussel
jchavarr@vub.ac.be

ABSTRACT
Feature Models are widely used in Software Product Lines to
represent commonalities and variabilities in a family of prod-
ucts and to support the interactive configuration of these
products. They comprise features and options that can be
included in a product and constraints about which combi-
nations of features are allowed. Libraries and frameworks
such as SPLOT and FaMa help engineers to determine if a
feature model is valid, detect errors in the models and vali-
date if a configuration (i.e., a set of features selected by an
user) does not contradict the constraints in the model. Re-
grettably, these libraries are based on Java and cannot be
used in .Net platforms such as the recent Windows Phone
systems. For that platforms, there is a Microsoft Solver
Foundation (MSF) library that provides a set of solvers such
as the used to analyse feature models. This paper explains
(1) how to translate feature models and configurations into
Constraint Satisfaction Problems in MSF, and (2) how to
use that library to determine if a model is valid, enumerate
all the valid configurations, and detect core and dead fea-
tures that may exist in the model. In addition, we present
a performance evaluation of the approach.

Categories and Subject Descriptors
D.2.13 [Reusable Software]: Domain engineering

General Terms
Design

Keywords
Feature Model, Constraint Programming, Microsoft Solver
Foundation

1. INTRODUCTION
Feature Models (FMs) are the de-facto standard for doc-

umenting, checking and reasoning about the configurations
of a software system [5]. They are used in Software Product
Lines (SPLs) to represent the common and optional (vari-
able) features that may comprise a product. Domain En-
gineers use these models to understand the set of products
and design the shared assets (e.g.,. components) that will be

2016 8th Euro American Conference on Telematics and Information
Systems (EATIS) Cartagena de Indias, Colombia. April 27 - 29

used to create all of them. In addition, engineers use these
models to create product configurators that validate if the
features selected by an user can be used to find or to build
a valid product.

Multiple approaches have been defined to analyse feature
models [2] and determine if the models are correct and do
not include any error. For instance, Benavides et al. [4][3]
presented an approach that convert feature models into a
Constraint Satisfaction Problem (CSP) and use a Constraint
Programming Solver (CP) to detect errors and perform some
analyses. Karatas et al. [6][7] extended that approach to
support extended feature models and to introduce a larger
set of operations. Slightly modified versions were later pre-
sented by Alvarez [1], and Mazo et al. [10]. However, exist-
ing literature describes implementations of these operators
in systems such as SICStus1 and SWI prolog2 and frame-
works such as SPLOT3 and FaMa4 that works on Java, but
not on frameworks based on .Net platforms.

This paper presents our implementation of operations to
analyse feature models and configurations using Microsoft
Solver Foundation (MSF)5, a .Net library aimed to spec-
ify, simulate and solve different types of mathematical and
constraint models. Our implementation uses existing theo-
ries about Feature Models and Constraint Programming to
translate the models into MSF-based models and use the
mentioned library to solve the model and implement analy-
sis operations.

In this paper, we describe (1) how to translate a feature
model into a MSF-based CSP model, (2) how to use the
MSF API to implement analysis operations, and (3) how our
approach performs when processing models with different
sizes.

The remainder of this paper is structured as follows. Sec-
tion 2 introduces feature models, the operations defined to
analyse these models, existing approaches to implement these
operations and the MSF. Section 3 details how to translate
a FM into a MSF-based CSP and how to implement the
mentioned operations. Finally, Section 4 discusses a perfor-
mance evaluation of this approach, and Section 5 concludes
the paper.

1http://sicstus.sics.se/
2http://www.swi-prolog.org/
3http://www.splot-research.org/
4http://www.isa.us.es/fama/
5https://msdn.microsoft.com/en-us/devlabs/hh145003

978-1-5090-2435-3/16/$31.00 c©2016 IEEE

2. BACKGROUND
This section gives an overview of the feature models used

in Software Product Lines, the operations that have been de-
fined to analyse these models, the use of CSP to implement
these operations and the Microsoft Solver Foundation.

2.1 Feature Models
A Feature Model specifies the similarities and differences

among the members of a family of products as well as the
options that can be used to configure each product [5]. In
Software Product Lines, these models have been used to
determine which elements or components can be included in
a product.

Feature Models.
A Feature Model depicts the features of a product and

their dependencies [13]. Typically, it is represented by a
hierarchical structure: a tree with a root feature known as
the concept (i.e., the product to configure in the tree), a set
of child features that conforms the branches and leafs, and a
set of feature groups and feature relationships representing
configuration constraints.

Table 1 shows the elements that may comprise a feature
model. Basically, in a feature model:
• the Root feature represents the concept depicted in the

model,
• Mandatory features represent commonalities, features

that must be selected when the parent feature is al-
ready selected,
• Optional features capturing variations, features that

may be selected or not when the parent is selected,
• Or (inclusive-or) groups, where one or more features

can be selected, and
• Alternative (exclusive-or) groups, where just one of the

set can be selected.

Feature relationships are:
• requires relationships that indicates that one feature

must be selected when other is selected, and
• excludes representing that two features cannot be se-

lected at the same time.

Figure 1 shows an example feature model for Cellular
Phones. The feature model has the root feature of Cellular
Phone which has three mandatory subfeatures: LCD, Input
Device and Battery and one optional subfeature of External
Memory. In turn, an LCD can be Normal or Touch Screen
but not both. The Input Device can be a Keypad, an Sty-
lus, or both. There is a excludes relationships indicating
that when a cell phone includes an Stylus, cannot include
a Normal LCD (it must include a Touch Screen). Finally,
the Battery can be of Small Size or Large Size. There is
also a requires relationship denoting that the use of a Touch
Screen requires the inclusion of a Large Size Battery.

Feature Configurations.
A Feature Configuration (or Configuration) is a set

of features of a FM. A configuration is valid if the set of
features satisfies the constraints defined in the model. For
instance, considering the above feature model, a valid config-
uration for a Cellular Phone is C = { CellularPhone, LCD,
Normal, InputDevice, KeyPad, Battery, SmallSize }

Note that not all the combinations of features are valid
configurations. For instance, if a configuration includes LCD

Element Graphic Description

root Concept or Product to
configure. It must be
selected.

mandatory if X is selected, Y must
be selected

optional if X is selected, Y can be
selected (or not)

or group if X is selected, one or
more of Y1, ..., Yn must
be selected

alternative if X is selected, only one
of Y1, ..., Yn must be se-
lected

requires if X is selected, Y must
be selected

excludes if X is selected, Y must
be not selected

Table 1: Feature Model elements

Figure 1: Example Feature Model, adapted from [8]

Normal and LCD Touch Screen, it is invalid because the
model states that the user must select one of them but not
both. In addition, if a configuration does not include neither
Keypad or Stylus, the configuration is invalid because the
user must select an Input Device with at least one of Keypad
or Stylus.

2.2 Automatic Analysis of Feature Models
In real SPLs, feature models may grow to hundreds or

thousands of features [11][9]. In such models, detecting
problems and conflicts becomes a hard task for humans.

Analysis Operations.
Some researchers have focused on defining operations to

analyse feature models and answer questions that may be
of use to the stakeholders of a product [2]. For instance,
an analysis operation is aimed to determine if a model is

valid (i.e., if it is not void). Considering that feature models
represent the features for a product, a feature model is valid
if it represents at least one product. Sometimes the model
has errors or conflicts that prevent the definition of any set
of features that satisfies the constraints of the model. For
instance, if the model states that some feature is mandatory
but also defines that the same feature cannot be selected, the
model is not valid because you cannot define a configuration
(a set of features) that includes that features and excludes
that feature at the same time.

Other analysis operations aim to detect errors in the fea-
ture models. For instance, there is an operation to detect
dead features, i.e., features that cannot be included in any
product, and core features (a.k.a., full mandatory features),
i.e., the set of features included in all the products.

A Catalog of Analysis Operations.
Benavides et al. [2] defined a set of operations to analyse

feature models that includes:
• Validating a Feature Model (or detecting FM sat-

isfiability), i.e., detecting if at least one product is rep-
resented by the FM.
• Validating a Product, i.e., detecting if a set of fea-

tures is valid regarding the features and constraints
defined in the FM.
• Validating a Partial Configuration, i.e., detecting

if a set of features does not include any contradiction
regarding the FM.
• Obtaining all products, i.e., retrieving all possible

products of a FM.
• Calculating the number of products
• Obtaining core features (or full-mandatory features),

i.e., finding the features that appear in all the valid
configurations.
• Obtaining dead features, i.e., finding the features

that never appear in any valid configuration.
• Obtaining variant features, i.e., finding the fea-

tures that may appear or not in a valid configurations.

2.3 Constraint Programming
In order to implement these analysis operations, multiple

approaches have been defined. Some of these approaches
translate each FM into a CSP and rely on automatic solvers
to find the answers.

Constraint Satisfaction Problems.
A Constraint Satisfaction Problem (CSP) is a math-

ematical problem defined in terms of variables, possible val-
ues for that variables (i.e., domains) and constraints. A
solution for the problem comprises a set with a value for
each variable that satisfy the constraints.

For instance, if we define two variables a and b values in
the domains Da = Db = {x ∈ Z|x = 0 ∨ x = 1} (i.e.,
that only may contain 0 or 1), and with a constraint a > b,
a solution (the only one) is {a = 1, b = 0}. Sometimes
the constraints in the problem cannot be satisfied by any
combination of values, in such cases we say that the problem
is unfeasible.

A Constraint Programming (CP) solver is a software
able to take an specification of a CSP and, if the problem
is feasible, to determine a solution. Usually, these solvers
can determine the total number of solutions and the values
for each solution. In addition, some solvers offer options to

define decisions and goals and determine the best solution
based on a given criterion.

2.4 Microsoft Solver Foundation
Microsoft Solver Foundation (MSF) is a .Net library that

can be used to solve CSPs and optimization models. De-
velopers use MSF to create models by specifying variables,
constraints, goals and data, and execute automatic solvers to
find the corresponding solutions. MSF includes some built-
in solvers for linear, nonlinear and constraint programming.
In addition, it can be used with other third-party solvers.

In MSF, models can be specified using scripts in the Opti-
mization Modeling Language (OML), spreadsheets in Excel,
functional programs in F# or imperative programs in any
other .Net language. For instance, using C#, a CSP model
can be created by creating objects that represent the vari-
ables and constraints. Additional objects representing the
Solver engine can be used to solve the model and obtain the
results.

MSF Services.
MSF Services is an API that allow developers create mod-

els independently of the type of solver to use. Using this
API, the program must define the variables as Decisions
and invoke a solve method specifying which type of solver
use. Listing 1 shows an excerpt of a C# program that de-
fine and solve a CSP model using MSF Services. Note that
the program invokes the solve using a ConstraintProgram-
mingDirective object.

1// using Microsoft.SolverFoundation.Services;
2

3SolverContext context =
SolverContext.GetContext ();

4Model model = context.CreateModel ();
5

6Domain values = Domain.IntegerRange (0,1);
7

8Decision a = new Decision(values , "a");
9Decision b = new Decision(values , "b");
10

11model.AddDecisions(a, b);
12model.AddConstraints("constraints", a > b);
13

14Solution solution = context.Solve(new
ConstraintProgrammingDirective ());

15while (solution.Quality !=
SolverQuality.Infeasible)

16{
17Report report = solution.GetReport ();
18Console.Write("{0}", report);
19solution.GetNext ();
20}

Listing 1: Sample code using MSF Services

MSF CSP solver.
Instead of creating a generic model that can be used with

any solver, it is possible to create a model that will work
exclusively with a CSP solver. Listing 2 shows an excerpt of
a C# program that define a model to be solved exclusively
with a CSP solver.

1 // using Microsoft.SolverFoundation.Solvers;
2

3 ConstraintSystem model =
ConstraintSystem.CreateSolver ();

4

5 CspDomain values =
model.CreateIntegerInterval (0, 1);

6 CspTerm a = model.CreateVariable(values , "a");
7 CspTerm b = model.CreateVariable(values , "b");
8 model.AddConstraints(model.Greater(a, b));
9

10 ConstraintSolverSolution solution =
model.Solve();

11 while (solution.HasFoundSolution)
12 {
13 Console.WriteLine("a : {0}",

solution.GetIntegerValue(a));
14 Console.WriteLine("b : {0}",

solution.GetIntegerValue(b));
15 solution.GetNext ();
16 }

Listing 2: Sample code using the MSF CSP Solver

MSF OML.
In addition, MSF supports the Optimization Modeling Lan-

guage (OML), a domain specific language to specify models.
Using OML, the developer can define the model using a more
concise syntax. Listing 3 shows the same example in OML.

1 Decisions[Integers[0, 1],
2 a,b
3],
4 Constraints[
5 a>b
6]

Listing 3: Sample model defined in OML

A program can read an OML model instead of creating
objects representing the variables and constraints. The pro-
cess to solve the model is similar to the used to process a
model using the MSF Services API.

2.5 CSP to analyse Feature Models
Many authors have proposed implementations based on

CSPs for the analysis operations presented before: Bena-
vides et al. [4][3] were the first transforming a feature model
into a CSP and using a CP solver to validate and perform
analyses. Karatas et al. [6][7] extended that approach to
support extended feature models and to introduce a larger
set of operations. Modified versions were later presented by
Alvarez [1] and Mazo et al. [10] to support more types of
features and constraints.

Basically, these approaches transform the elements and
relationships in the feature model into a CSP. They usually
take features and relationships and transform them into vari-
ables and constraints. For instance, considering the above
example FM for a Cellular Phone, the options for the LCD
includes a Normal LCD and a Touch Screen LCD. Each of
these features may be translated into the variables Normal
and TouchScreen that will take a value of 0 when the feature
is not-selected and 1 when the user select the corresponding
option, i.e., DNormal = DTouchScreen = {x ∈ Z|x = 0∨x = 1}.
In addition, because these features belong to an xor-group,
the user can select only one of these features, i.e., they can be
translated to iif LCD = 1 =⇒ Normal + TouchScreen = 1

3. ANALYSING FEATURE MODELS WITH
MICROSOFT SOLVER FOUNDATION

We have implemented analysis operations for feature mod-
els using MSF. This section presents (1) how we translate
feature models into a CSP, and (2) how we implement the
analysis operations.

3.1 Translating FMs into CSPs
Feature Models represents features that may be selected

by an user to specify a product and constraints among which
features can be selected at the same time. These options and
constraints can be translated to an constraint programming.
Table 2 summarizes the mappings we use (based on the pro-
posed by Benavides et al. [4][3] and van der Broek [14]).

Element Graphic CSP

root r = 1

mandatory x = y

optional x ≥ y

or group x→
∑

yi ≥ 1

alternative x =
∑

yi
(i.e., x→

∑
yi = 1)

requires x ≤ y

excludes x + y ≤ 1

Table 2: Feature Model mappings to CSP

The mapping between a FM and a CSP has the following
general form:
• each feature is mapped to a variable in the CSP;
• the domain for each variable is the same: {0, 1}, where

0 is used to represent non-selected features and 1 for a
feature selected by the user; and
• types of features, groups and relationships are repre-

sented as constraints.

The elements of the model are transformed to constraints
as following:
• Mandatory features: let X be the parent and Y the

child in a mandatory relationship, then the equivalent
constraint is Y = X
• Optional feature: let X be the parent and Y the

child in an optional relationship, then the equivalent
constraint is X ≥ Y
• Or group: let X be the parent of an alternative group

and Y1, ..., Yi the set of children, then the equivalent
constraint is if (X = 1,

∑
Yi ≥ 1)

• Alternative (xor) group: let X be the parent of
an or-group and Y1, ..., Yi the set of children, then the
equivalent constraint is X =

∑
Yi

• Requires: Consider the relationship X
requires−−−−−→ Y ,

the equivalent constraint is X ≤ Y

• Excludes: Consider the relationship X
excludes−−−−−→ Y ,

the equivalent constraint is X + Y ≤ 1

For instance, consider the FM presented in Figure 1. It
can be modeled in MSF using the CSP-specific API, such as
the depicted in Listing 6. First, it is necessary to create the
solver and define the domain for the variables. Instead of
creating a new domain, we use the DefaultBoolean domain
that is equivalent to CreateIntegerInterval(0, 1). Then, the
program must define the variables representing each feature.
And Finally, it must include into the model the constraints
representing the feature groups and relationships.

3.2 Implementing Analysis Operations
Once Feature Models are translated to a CSP, Analysis

Operations can be implemented by using a CP solver.

Validation.
The validation of a feature model is straightforward. A

valid feature model requires that a concrete configuration
can be derived from the specification. Considering that we
transform the FM into a CSP, the FM is valid if a CP solver
can find a solution for the CSP. The FM is valid if the cor-
responding CSP is feasible. In contrast, the FM is void if
the CSP is unfeasible.

1 public boolean IsValid(ConstraintSystem model)
2 {
3 ConstraintSolverSolution solution =

model.Solve();
4 return solution.HasFoundSolution;
5 }

Listing 4: Sample code to validate a model

All products.
The set of all products of a feature model is the set of

valid configurations regarding that model. In MSF, this op-
eration is straightforward. The CP solver included in MSF
can return all the solutions of a CSP.

1 public List <Configuration >
GetAllProducts(ConstraintSystem model)

2 {
3 List <Configuration > list = new

List <Configuration >();
4 ConstraintSolverSolution solution =

model.Solve();
5 while (solution.HasFoundSolution)
6 {
7 list.Add(new Configuration(solution));
8 }
9 return list;

10 }

Listing 5: Sample code to determine all the products

Number of products.
The number of products of a feature model is the total

number of valid configurations regarding that model. This

1// using Microsoft.SolverFoundation.Solvers;
2ConstraintSystem model =

ConstraintSystem.CreateSolver ();
3

4// define the domain
5CspDomain values = model.DefaultBoolean;
6// define the variables
7CspTerm CellPhone =

model.CreateVariable(values , "CellPhone");
8CspTerm LCD = model.CreateVariable(values ,

"LCD");
9CspTerm TouchScreen =

model.CreateVariable(values ,
"TouchScreen");

10CspTerm Normal = model.CreateVariable(values ,
"Normal");

11CspTerm InputDevice =
model.CreateVariable(values ,
"InputDevice");

12CspTerm KeyPad = model.CreateVariable(values ,
"KeyPad");

13CspTerm Stylus = model.CreateVariable(values ,
"Stylus");

14CspTerm ExtMemory =
model.CreateVariable(values , "ExtMemory");

15CspTerm Battery = model.CreateVariable(values ,
"Battery");

16CspTerm SmallSize =
model.CreateVariable(values , "SmallSize");

17CspTerm LargeSize =
model.CreateVariable(values , "LargeSize");

18

19// add the constraints
20model.AddConstraints(
21// Root
22model.Equal(1, CellPhone),
23

24// LCD is mandatory
25model.Equal(CellPhone , LCD),
26// LCD or-group
27model.Equal(LCD ,
28model.Sum(TouchScreen , Normal)),
29

30// Input Device is mandatory
31model.Equal(CellPhone , InputDevice),
32

33// Input Device alternative group
34model.Implies(
35model.Equal(1, LCD),
36model.GreaterThan(
37model.Sum(TouchScreen , Normal),
381)
39),
40

41// ExtMemory is optional
42model.GreaterThanOrEqual(CellPhone ,

ExtMemory);
43

44// Battery is mandatory
45model.Equal(CellPhone , Battery),
46// Battery or-group
47model.Equal(LCD ,
48model.Sum(SmallSize , LargeSize))
49);
50

51// Normal LCD excludes Stylus
52model.LesserThanOrEqual(Normal , Stylus);
53

54// Touch Screen requires
55// a Large Size Battery
56model.LesserThanOrEqual(
57model.Sum(TouchScreen , LargeSize),
581);

Listing 6: Sample code to create the CSP for the sample FM

can be easily obtained in MSF by requesting that value to
the solver.

Core Features.
A core feature is a feature which is part of all the prod-

ucts described by the feature model. Core Features cannot
be disabled because of relations and/or constraints in the
model. This means that, if we add to the CSP an assump-
tion (a constraint) disabling a core feature, i.e., setting the
value of 0, the modified model will result invalid/infeasible.

1 public List <Feature >
GetCoreFeatures(List <Feature > features ,
ConstraintSystem model)

2 {
3 List <Feature > list = new List <Feature >();
4 foreach (Feature f in features)
5 {
6 CspTerm constraint = model.Equal(0, f)
7 model.AddConstraints(constraint);
8 ConstraintSolverSolution solution =

model.Solve();
9 if (! solution.HasFoundSolution)

10 {
11 list.Add(f);
12 }
13 model.RemoveConstraints(constraint);
14 }
15 return list;
16 }

Listing 7: Sample code to determine all the core-features

Dead Features.
A dead feature is a feature which cannot be part in any

product although it is part of the feature model. Dead fea-
tures occur because of constraints in the model which force
them to be disabled. In consequence, if we add to the CSP
an assumption selecting a dead feature, i.e., setting the value
of 1, the modified model will result invalid/infeasible.

1 public List <Feature >
GetDeadFeatures(List <Feature > features ,
ConstraintSystem model)

2 {
3 List <Feature > list = new List <Feature >();
4 foreach (Feature f in features)
5 {
6 CspTerm constraint = model.Equal(1, f)
7 model.AddConstraints(constraint);
8 ConstraintSolverSolution solution =

model.Solve();
9 if (! solution.HasFoundSolution)

10 {
11 list.Add(f);
12 }
13 model.RemoveConstraints(constraint);
14 }
15 return list;
16 }

Listing 8: Sample code to determine all the dead-features

Variant Features.
A variant feature is a feature that can be enabled or dis-

abled in one product of the represented by the feature model.
Basically, a feature can either be core, dead or variant. The

set of variant features can be determined after computing
the set of core and dead features.

1public List <Feature >
GetVariantFeatures(List <Feature > features ,
ConstraintSystem model)

2{
3List <Feature > cores =

GetCoreFeatures(features , model);
4List <Feature > deads =

GetDeadFeatures(features , model);
5return features.Except(cores)
6.Except(deads).ToList ();
7}

Listing 9: Sample code to determine all the variant-features

Valid Product (or Valid Configuration).
A Valid Product is a configuration (i.e., a set of features)

that defines completely a product and satisfies all the con-
straints defined in a feature models. Basically, this complete
configuration includes all the features for a product. Those
features not included must be disabled. To check if a prod-
uct is valid, we add to the CSP assumptions enabling each
selected feature, i.e., setting them the value of 1, and dis-
abling each non-selected feature, i.e., setting the value of 0.
If the resulting CSP is feasible, the product is valid. If not,
the product is not valid.

Valid Partial Product (or Valid Partial Configuration).
A Valid Partial Product is a configuration that is not

complete but does not contradict any constraint defined in
the feature model. Basically, is a configuration where not-
included features are not disabled. The partial product is
valid if the resulting CSP is feasible,

1public Boolean
IsValidConfiguration(Configuration config ,
List <Feature > features , ConstraintSystem
model , bool partial = false)

2{
3foreach(Feature f in features)
4{
5if (config.Contains(f))
6model.AddConstraints(model.Equal(1,f));
7else
8if (! partial)
9model.AddConstraints(model.Equal(0,f));
10}
11ConstraintSolverSolution solution =

model.Solve();
12return solution.HasFoundSolution;
13}

Listing 10: Sample code to validate a configuration

4. EVALUATION
We have implemented a .Net library to analyse feature

models6, using MSF and supporting the diverse mappings
and operations presented above. In our tests, this library
was able to process the feature models correctly with a per-
formance similar to other existing libraries. This section
discusses the tests and performance evaluation we made.

6http://github.com/FaMoSA/fma.net

Model # feat CTRC Valid # prods All Prods 1st 50k # dead Dead
(ms) (ms) (ms) (ms)

PUJ WebStore 17 0 20 816 32 - 0 81,2
Dell Computers 47 76 21,4 2319 83 - 0 134,8
FrasCaTi 1.4 63 57 21,2 +1 billion - 1331,2 0 159,4
J2EE Arch 77 0 21 +1 billion - 1544,0 0 158,8
XText 137 1 14,8 +1 billion - 2144,4 0 320,0
Printers 172 0 21,2 +1 billion - 3148,0 0 371,4

Table 3: Data obtained processing some selected SPLOT feature models

(a) Validation (b) All Products

Figure 2: Performance of processing some FeatureIDE feature models

4.1 Tests
In order to test our implementation, we choose publicly

available feature models. We use models included in the
FaMa Test Suite7 to check if the library is able to detect
valid and invalid feature models. In addition, we took some
models with different sizes from the FeatureIDE test suite8

and the SPLOT repository9. These models were also used
to evaluate the library’s performance.

4.2 Performance Evaluation
Here we present two set of models used in our evalua-

tion. On one hand, we used a set of feature models from the
SPLOT repository: PUJ WebStore, Dell Computers, Fras-
CaTi, J2EE Arch, Printers, and Xtext. On the other hand,
we took features models from the FeatureIDE test suite.
This test suite has thousands of models with different sizes.
We used thirty models: three sets of 10 models with 10, 20
and 50 features.

We executed a set of tests on a Intel Core i7-2600 4.4GHz
computer with 16GB RAM running Windows 7 64 bits. We
measured the time using the standard System.Diagnostic
classes existing in .Net. Here we present data of executing
the operations five times for each model.

Validation of a Feature Model.
We test the operation that validates a feature model using

both sets of models. Table 3 shows the time spent to vali-
date the models from SPLOT. The table shows the number
of features of the model (in the “# feat” column) and the
time of processing in milliseconds. Figure 2a shows the per-

7http://www.isa.us.es/fama/?FaMa_Test_Suite
8http://wwwiti.cs.uni-magdeburg.de/iti_db/
research/featureide/
9http://www.splot-research.org/

formance executing the operation with models of different
sizes. The X axis shows the number of features and the Y
axis the time of processing in milliseconds. Note that the
times are quite similar among them. According to an study
of Pohl et al. [12], the performance of the MSF solver is
similar to the observed with other solvers in C and Java.

All Products.
To validate a model, our library must invoke the solver

one time. To get all the products, it is necessary to invoke
the solver as many times as the number of products. Table
3 shows the number of products of each SPLOT model and
the time spent. Note that the first two models represents
816 and 2319 products while the others represent more than
1 billion each one (according to SPLOT). For the last four
models, there is the time spent to determine the first 50000
products.

Figure 2b shows the performance of the “all products”
operation according to the number of products. The X axis
shows the number of products using a logarithmic scale and
the Y axis the time of processing in milliseconds. Note that
the time of processing increases as the number of products
increase.

Dead Features.
In contrast to the “all products” operation, the operation

to detect all the “dead features” invokes the solver one time
for each feature. Other operations, such as “core features”
and “variant features” exhibit a similar behaviour. Table
3 shows the time spent to detect the dead features in the
selected SPLOT models. Note that the time increase as
the number of features increase. Figure 3 shows the per-
formance of the “dead features” operation with models of
different sizes. Note that the processing time increases as
the number of features increase.

Figure 3: Performance of obtaining Dead Features in some
FeatureIDE models

5. CONCLUSIONS
We have presented our implementation of operations to

analyse feature models and configurations using Microsoft
Solver Foundation (MSF). It supports the complete set of
analysis operations described by Benavides et al. [2] and
can be used in .Net applications instead of libraries and
frameworks such as SPLOT or FaMa. This is very useful
in platforms that may run .Net applications but not Java
libraries.

We have performed a complete set of tests to ensure that
operations works correctly. In addition, we have performed
a performance evaluation included in this paper.

Our implementation does not include some optimizations
proposed by other authors. For instance, there are ap-
proaches that combine solvers [11], eliminates non-relevant
features [15], and use heuristics to simplify the model [9][12].
Implementing these optimizations remains in the future work.

There are other transformation operations on features mod-
els (e.g., merge and slice) not mentioned in this paper. In
addition, there other operations to support interactive con-
figuration (e.g., to autocomplete or recommend options to
users). Currently, we are working on implementing these op-
erations using Microsoft Solver Foundation and other .Net-
based solvers.

6. ACKNOWLEDGMENTS
Jaime Chavarriaga is a recipient of a COLCIENCIAS fel-

lowship. Part of this work has been supported by a coopera-
tive project between Universidad de los Andes and Siemens
Colombia.

7. REFERENCES
[1] C. E. Alvarez. Automated Reasoning on Feature

Models via Constraint Programming. Master’s thesis,
Uppsala Universiteit, Sweden, 2011.

[2] D. Benavides, S. Segura, and A. Ruiz-Cortés.
Automated analysis of feature models 20 years later: a
literature review. Information Systems, 35(6):615 –
636, 2010.

[3] D. Benavides, S. Segura, P. Trinidad, and
A. Ruiz-Cortés. Using Java CSP Solvers in the
Automated Analyses of Feature Models. In Generative
and Transformational Techniques in Software
Engineering (GTTSE 2005), pages 399–408. Springer
Berlin Heidelberg, 2006.

[4] D. Benavides, P. Trinidad, and A. Ruiz-Cortés.
Automated reasoning on feature models. In Advanced
Information Systems Engineering (CAISE 2005),
pages 491–503. Springer Berlin Heidelberg, 2005.

[5] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak,
and A. S. Peterson. Feature-Oriented Domain Analysis
(FODA) feasibility study. (CMU/SEI-90-TR-021).
Technical report, Software Engineering Institute,
Carnegie Mellon University, 1990.

[6] A. S. Karataş, H. Oğuztüzün, and A. Doğru. Mapping
extended feature models to constraint logic
programming over finite domains. In 14th
International Conference on Software Product Lines
(SPLC’10). Springer-Verlag, 2010.

[7] A. S. Karataş, H. Oğuztüzün, and A. Doğru. From
extended feature models to constraint logic
programming. Science of Computer Programming,
2012.

[8] S. Kim, D.-K. Kim, L. Lu, and S. Park. Quality-driven
architecture development using architectural tactics.
Journal of Systems and Software, 82(8):1211 – 1231,
2009.

[9] J. H. J. Liang, V. Ganesh, K. Czarnecki, and
V. Raman. Sat-based analysis of large real-world
feature models is easy. In 19th International
Conference on Software Product Line, (SPLC 2015),
pages 91–100, 2015.

[10] R. Mazo, C. Salinesi, D. Diaz, and A. Lora-Michiels.
Transforming attribute and clone-enabled feature
models into constraint programs over finite domains.
In 6th International Conference on Evaluation of
Novel Approaches to Software Engineering
(ENASE’11). Springer-Verlag, 2011.

[11] M. Mendonca, A. W ↪asowski, and K. Czarnecki.
Sat-based analysis of feature models is easy. In 13th
International Software Product Line Conference
(SPLC ’09), pages 231–240, 2009.

[12] R. Pohl. Improving the performance of the automated
analysis of feature models by applying graph width
measures. Master’s thesis, University of
Duisburg-Essen, Essen, Germany, 2012.

[13] P.-Y. Schobbens, P. Heymans, and J.-C. Trigaux.
Feature diagrams: A survey and a formal semantics.
In 14th IEEE International Conference Requirements
Engineering (RE 2006), pages 139–148, 2006.

[14] P. van den Broek. Optimization of product
instantiation using integer programming. In 14th
International Software Product Line Conference
(SPLC 2011), pages 107–111, 2011.

[15] H. Yan, W. Zhang, H. Zhao, and H. Mei. An
optimization strategy to feature models’ verification
by eliminating verification-irrelevant features and
constraints. In 11th International Conference on
Software Reuse, (ICSR 2009), pages 65–75, 2009.

